ISR|SRC|Michigan Retirement Research Center|UofM
Mailing List | News | Contact Us
Follow onTwitter
Main photo Promoting research on retirement and Social Security policy

Abstract

Random Scenario Forecasts Versus Stochastic Forecasts
Shripad Tuljapurkar, Ronald D. Lee and Qi Li
WP 2004-073

Probabilistic population forecasts are useful because they describe uncertainty in a quantitatively useful way. One approach (that we call LT) uses historical data to estimate stochastic models (e.g., a time series model) of vital rates, and then makes forecasts. Another (we call it RS) began as a kind of randomized scenario: we consider its simplest variant, in which expert opinion is used to make probability distributions for terminal vital rates, and smooth trajectories are followed over time. We use analysis and C:\Eudora\attach\demo_3_25_04.pdfexamples to show several key differences between these methods: serial correlations in the forecast are much smaller in LT; the variance in LT models of vital rates (especially fertility) is much higher than in RS models that are based on official expert scenarios; trajectories in LT are much more irregular than in RS; probability intervals in LT tend to widen faster over forecast time. Newer versions of RS have been developed that reduce or eliminate some of these differences.

Download: Full Paper (PDF)